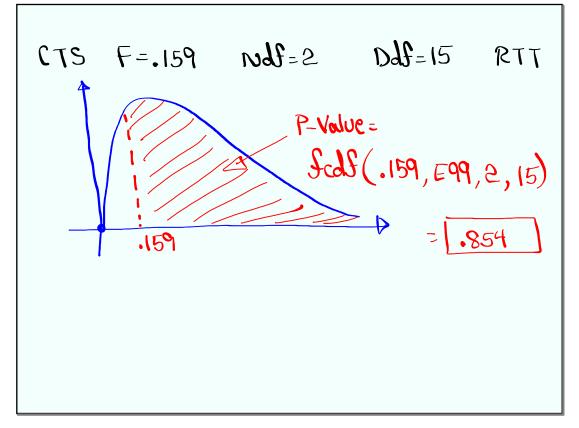


Feb 19-8:47 AM

Jun 2-1:49 PM

(SG 29) 8 roundomly selected female students had a standard deviation of 8 4rs for N=8 Males n=10 S=5 their ages. 10 randomly selected male students had a standard deviation of 5 Yrs for their ago, Test the claim that there is a difference between two Pop. Standard deviations. JI + JZ Claim Ho: $\sigma_1 = \sigma_2$ × H1 H1: 07 + 02 TTT, claim 1) Sy>S2 Females | Males a) CTS F= $\frac{S_1^2}{S_2^2} = \frac{8^2}{6^2} = 2.56$ 14:8 12=10 S1=8 S2=5 NdS= n,-1=7 Daf= n2-1=9 Scalf(2.56, E99, 7, 9) = .095 P-Value = 2 · Smaller 2.56 =2(,095) =2(,095) ScdS(0, 2.56, 7,9)= .905 P-value or Ho valid 19 **ch** 19 .05 Hz invalid Invalid claim => Reject the

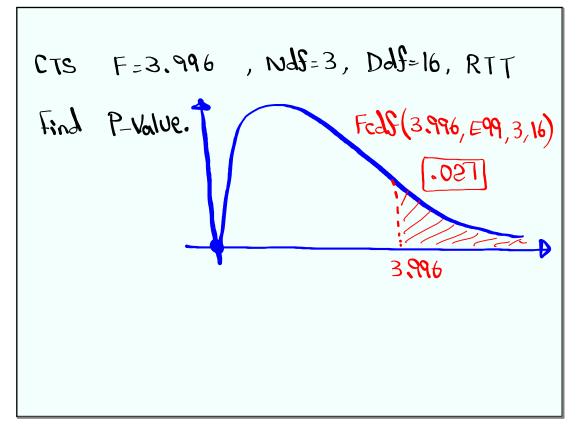
Jun 2-2:02 PM


Now using 2-Samp F Test
inpt: Stats

$$S_{1}=8$$
 CTS F= 2.56
 $n_{1}=9$
 $S_{2}=6$ P-Value P=.190
 $T_{1} \neq T_{2}$

Study Guide 33 Last Topic Comparing at least 3 pop. means: $H_0: \mathcal{M}_2 = \mathcal{M}_2 = \mathcal{M}_3 = \cdots = \mathcal{M}_K$ H1: At least one mean is different. RTT K→ # of groups Ndf=K-1 n → Total Sample size → Ddf= n-K Method -> ANOVA (Analysis of Variance) STAT TESTS (*) ANOVA L1, L2, L3,... CTS F P-Value P P-Value> x -> H. Valid, H1 invalid P-Value <0 -> Ho invalid, Hy Valid Final Conclusion must be claim Reject the claim OR FTR the claim

Jun 2-2:18 PM


I randomly selected exams from 3 colleges,
Here are the Scores
ELAC Mt. SAC Chaffey
75 83 100 73 96 99 84 96 100 90 88 68 86 80 65 75 80 80
K=3 NJF=K-1=2 T=7+5+6=18 DJF=n-K=15 Chaffey=>L3
use $\alpha = .1$ to test the claim that all means are equal. [STAT]
H _o : $M_2 = M_3$ claim (TESTS) (RNOVA(L1, L2, L3)
H1: At least one mean is Ligerent. RTT CTS F=.159
P-Value P=.854, P-Value x Ho Valid > Valid claim .854 .1 Hz invalid FTR the claim

Jun 2-2:38 PM

I randomly selected students Srom 4 Schools.
Here are their ages:
ELAC Mt. SAC Chaffer UCLA
24 28 18 19 29 35 17 23 29 28 33 40
32. 25 21 25 29 30 50 35
K=4 NB=K-1=3
n=20 $DJ=n-k=16$
NO & -> 05 Test the claim that not all pop. means
ore equal. Ho: M1= M2= M3= M4
Hy: Ht least one mean is disserent. RIT claim
ELAC ->L1 ANOVA (L1, L2, L3, L4)
NH.SAC→L2 CTS F=3.996
chaffer -> L3 P-value P= .027
UCLA -> L4 P-Value < a Ho invalid .027 .05 Hz Valid
If we choose or to be .02 or Valid claim
.01, then P-value > x Ho valid Structure Ho valid Clarm HI invalid

Jun 2-2:41 PM

Jun 2-2:55 PM